49 research outputs found

    Systematic Transmission With Fountain Parity Checks for Erasure Channels With Stop Feedback

    Full text link
    In this paper, we present new achievability bounds on the maximal achievable rate of variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC) at a fixed message size M=2kM = 2^k. We provide new bounds for VLSF codes with zero error, infinite decoding times and with nonzero error, finite decoding times. Both new achievability bounds are proved by constructing a new VLSF code that employs systematic transmission of the first kk bits followed by random linear fountain parity bits decoded with a rank decoder. For VLSF codes with infinite decoding times, our new bound outperforms the state-of-the-art result for BEC by Devassy \emph{et al.} in 2016. We also give a negative answer to the open question Devassy \emph{et al.} put forward on whether the 23.4%23.4\% backoff to capacity at k=3k = 3 is fundamental. For VLSF codes with finite decoding times, numerical evaluations show that the achievable rate for VLSF codes with a moderate number of decoding times closely approaches that for VLSF codes with infinite decoding times.Comment: 7 pages, double column, 4 figures; comments are welcome! changes in v2: corrected 2 typos in v1. arXiv admin note: substantial text overlap with arXiv:2205.1539

    High-Rate Convolutional Codes with CRC-Aided List Decoding for Short Blocklengths

    Full text link
    Recently, rate-1/ω1/\omega zero-terminated and tail-biting convolutional codes (ZTCCs and TBCCs) with cyclic-redundancy-check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRCs for rate-(ω1)/ω(\omega-1)/\omega CCs with short blocklengths, considering both the ZT and TB cases. The CRC design seeks to optimize the frame error rate (FER) performance of the code resulting from the concatenation of the CRC and the CC. Utilization of the dual trellis proposed by Yamada \emph{et al.} lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD) of ZTCCs and TBCCs. CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128128.Comment: 6 pages; submitted to 2022 IEEE International Conference on Communications (ICC 2022

    CRC-Aided High-Rate Convolutional Codes With Short Blocklengths for List Decoding

    Full text link
    Recently, rate-1/n zero-terminated (ZT) and tail-biting (TB) convolutional codes (CCs) with cyclic redundancy check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRC polynomials for rate- (n-1)/n ZT and TB CCs with short blocklengths. This paper considers both standard rate-(n-1)/n CC polynomials and rate- (n-1)/n designs resulting from puncturing a rate-1/2 code. The CRC polynomials are chosen to maximize the minimum distance d_min and minimize the number of nearest neighbors A_(d_min) . For the standard rate-(n-1)/n codes, utilization of the dual trellis proposed by Yamada et al. lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128. This paper compares the FER performance (gap to the RCU bound) and complexity of the CRC-aided standard and punctured ZTCCs and TBCCs. This paper also explores the complexity-performance trade-off for three TBCC decoders: a single-trellis approach, a multi-trellis approach, and a modified single-trellis approach with pre-processing using the wrap around Viterbi algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0792

    Research progress on detection methods of N-dimethylnitrosamine in foods

    Get PDF
    N-dimethylnitrosamine is one of the most toxic nitrosamine compounds and can be produced in the process of food processing or storage. The detection methods are various with tedious operation and low accuracy. QuEChERS pretreatment combined with GC/LC-MS has been widely used in the determination of N-dimethylnitrosamine in food due to its advantages of simple operation, good extraction and purification, high sensitivity, stable recovery and effective improvement of detection rate and throughput. The pretreatment methods, detection equipment and detection parameters of N-dimethylnitrosamine in food were compared to analyze the advantages and disadvantages of different methods

    Distributed decoding of convolutional network error correction codes

    No full text
    A Viterbi-like decoding algorithm is proposed in this paper for generalized convolutional network error correction coding. Different from classical Viterbi algorithm, our decoding algorithm is based on minimum error weight rather than the shortest Hamming distance between received and sent sequences. Network errors may disperse or neutralize due to network transmission and convolutional network coding. Therefore, classical decoding algorithm cannot be employed any more. Source decoding was proposed by multiplying the inverse of network transmission matrix, where the inverse is hard to compute. Starting from the Maximum A Posteriori (MAP) decoding criterion, we find that it is equivalent to the minimum error weight under our model. Inspired by Viterbi algorithm, we propose a Viterbi-like decoding algorithm based on minimum error weight of combined error vectors, which can be carried out directly at sink nodes and can correct any network errors within the capability of convolutional network error correction codes (CNECC). Under certain situations, the proposed algorithm can realize the distributed decoding of CNECC.Comment: the full version of manuscript for ISIT 201
    corecore